
 8305 Catamaran Circle
Lakewood Ranch, FL

Page 1 of 3

AN2501 – IPhysical Entity Interfaces Explained

BSI Application Note

January 2025

Copyright (c) 2014-2023 Battlespace Simulations, Inc. All rights reserved.

Battlespace Simulations, Modern Air Combat Environment, and the MACE and BSI logo are registered
trademarks of Battlespace Simulations, Inc.

Battlespace Simulations, Inc.

8305 Catamaran Circle

Lakewood Ranch, FL 34202

If you have questions or comments, please contact us at support@bssim.com.

mailto:support@bssim.com

 8305 Catamaran Circle
Lakewood Ranch, FL

Page 2 of 3

Overview

Those of you with some familiarity with the BSI API know that a common pattern is the
need to cast an IPhysicalEntity instance to some other interface type in order to
accomplish some tasks. For example, a common requirement would be the need to cast an
IPhysicalEntity instance to an IPhysicalEntityController in order to assign a new
heading, speed, or altitude to an entity, for example

IPhysicalEntity selectedEntity =
MissionInstance.Mission.Map.SelecteEntity;
IPhysicalEntityController ipec = selectedEntity as
IPhysicalEntityController;
if(ipec != null)
{
 ipec.AdjustAltitude_m(SelecteEntity.AltitudeMSL_m + 10000);
}

What are these additional IPhysicalEntity interfaces, why do they exist, and how can you
use them?

What is an Interface?

A programming interface is like a blueprint or a contract in programming. Imagine you’re
designing different types of vehicles, like cars, bikes, and airplanes. While these vehicles are
all different, they might share common features, like the ability to start, stop, or accelerate.

In the BSI API, an interface defines those shared features (methods, properties, or events)
without providing any details about how they work. We expose the underlying property,
method, or event by providing an implementation of the interface. The interface is our
contract with you, the developer, on what we expose. Because it’s a contract, we strive not
to change it once it’s in the wild, as changes to how things are implemented means your
code could stop working.

Physical entities are quite complex objects, with different parameters controlling their
movement, their camera, their aerodynamics, or their equipment. Rather than hang all of
the elements a user might need on one massive object interface, we attempt to organize
things by functionality. For example, if you want to control movement (heading, speed,
altitude) programmatically, you will find the required properties and methods on the
IPhysicalEntityController interface. Need to control the entity’s sensor/camera? You
will find what you need on IPhysicalEntityCamera.

For physical entities in MACE, the implementation of each of these interfaces happens on
the same object type. That’s why a cast will work – the same underlying object in the MACE
runtime implements both the IPhysicalEntity and IPhysicalEntityController

 8305 Catamaran Circle
Lakewood Ranch, FL

Page 3 of 3

interfaces. Beginning in MACE 2024R1, however, we’ve begun exposing interfaces directly
via properties on the IPhysicalEntity interface itself. Revisiting our previous example,
you can now do the following:

IPhysicalEntity selectedEntity =
MissionInstance.Mission.Map.SelecteEntity;
selectedEntity.Controller.AdjustAltitude_m(SelecteEntity.AltitudeMSL_m +
10000);

The IPhysicalEntity Interfaces

Here’s a short rundown on the IPhysicalEntity interfaces and what they do:

• IPhysicalEntity – the default interface for interacting w/ entities. Most of the
commonly used properties, methods, and events will be on this interface. Note that
IPhysicalEntities represent platforms, lifeforms, and weapons.

• IPhysicalEntityAero – for interacting with the aerodynamic model for the entity. It
is exposed via IPhysicalEntity.Aero.

• IPhysicalEntityCamera – control over the entity’s sensor/camera. It is exposed via
IPhysicalEntity.Camera.

• IPhysicalEntityController – control over entity movement, such as heading,
speed, and altitude assignments. It is exposed via IPhysicalEntity.Controller.

• IPhysicalEntityEquipment – an interface for gettings specialized lists of the
entity’s loaded equipment. An example would be the ShootableEquipment property,
which would return not only weapons, but IEquipment instances that could be
selected and “fired” from the entity control menu, like “Laser Range Finder”. It is
exposed via IPhysicalEntity.Equipment.

• IPhysicalEntityIFF – control over the entity’s IFF properties, like the Mode3
squawk. It is exposed via IPhysicalEntity.IFF.

• IPhysicalEntityLighting – control over the entity’s lighting. It is exposed via
IPhysicalEntity.Lighting.

• IPhysicalEntityPresention – control over the entity’s appearance bits, or control
over the entity’s icon on the MACE map.

• IPhysicalEntitySGE – access to properties otherwise exposed via Signal
Generation Engine (SGE) interfaces. For instance, you can access the
BSI.SignalGeneration.Entity instance via this interface, an entity object type
used within the SGE.

